Indian Statistical Institute, Bangalore

B. Math (Hons.) Second Year

First Semester - Ordinary Differential Equations
Mid-Semester Exam
Date: 21st February 2024
Maximum marks: 30

Answer any six, each question carries 5 marks

1. Solve $y^{\prime}+P y=Q y^{n}$ for any $n \in \mathbb{N} \cup\{0\}$ and use it to solve $x y^{\prime}+y=x^{4} y^{3}$.
2. Find continuous functions P and Q so that e^{x} and $x e^{x}$ are solutions of $y^{\prime \prime}+$ $P y^{\prime}+Q y=0$. Are P and Q unique for this property. Justify your answer.
3. Let p and q be constants. Reduce $x^{2} y^{\prime \prime}+x p y^{\prime}+q y=0$ to a linear equation with constant coefficients and use it to solve $x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0$.
4. Considering power series method for the first order equation $(1+x) y^{\prime}=p y$, prove $(1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\cdots+\frac{p(p-1) \cdots(p-n)}{n!} x^{n}+\cdots$ for $|x|<1$.
5. Let y be a solution of $y^{\prime \prime}+P y^{\prime}+Q y=0$ on $[a, b]$ where P and Q are continuous functions on $[a, b]$. If y^{\prime} and $y^{\prime \prime}$ are also solutions of $y^{\prime \prime}+P y^{\prime}+Q y=0$ on $[a, b]$, then determine y.
6. Prove $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$ has two independent Frobenius series solutions using Frobenious method.
7. Prove that J_{p+1} has a zero between two positive zeros of J_{p}. Can J_{p} and J_{p+1} have a common zero. Justify your answer.
8. Let y_{1}, y_{2} be solutions of second order homogeneous equation $y^{\prime \prime}+P y^{\prime}+Q y=0$. Let $\left(y_{1}, z_{1}\right)$ and $\left(y_{2}, z_{2}\right)$ be solutions of the corresponding system of first order equations $y^{\prime}=z ; z^{\prime}=-P z-Q y$. Prove that Wronskian of y_{1}, y_{2} and Wronskian of $\left(y_{1}, z_{1}\right)$ and $\left(y_{2}, z_{2}\right)$ are same.
