Indian Statistical Institute, Bangalore

B. Math (Hons.) Second Year

First Semester - Ordinary Differential Equations

Mid-Semester Exam Maximum marks: 30 Date: 21st February 2024 Duration: 2 hours

Answer any six, each question carries 5 marks

- 1. Solve $y' + Py = Qy^n$ for any $n \in \mathbb{N} \cup \{0\}$ and use it to solve $xy' + y = x^4y^3$.
- 2. Find continuous functions P and Q so that e^x and xe^x are solutions of y'' + Py' + Qy = 0. Are P and Q unique for this property. Justify your answer.
- 3. Let p and q be constants. Reduce $x^2y'' + xpy' + qy = 0$ to a linear equation with constant coefficients and use it to solve $x^2y'' + 2xy' 12y = 0$.
- 4. Considering power series method for the first order equation (1+x)y' = py, prove $(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \dots + \frac{p(p-1)\dots(p-n)}{n!}x^n + \dots$ for |x| < 1.
- 5. Let y be a solution of y'' + Py' + Qy = 0 on [a, b] where P and Q are continuous functions on [a, b]. If y' and y'' are also solutions of y'' + Py' + Qy = 0 on [a, b], then determine y.
- 6. Prove $x^2y'' + xy' + (x^2 1/4)y = 0$ has two independent Frobenius series solutions using Frobenious method.
- 7. Prove that J_{p+1} has a zero between two positive zeros of J_p . Can J_p and J_{p+1} have a common zero. Justify your answer.
- 8. Let y_1, y_2 be solutions of second order homogeneous equation y'' + Py' + Qy = 0. Let (y_1, z_1) and (y_2, z_2) be solutions of the corresponding system of first order equations y' = z; z' = -Pz - Qy. Prove that Wronskian of y_1, y_2 and Wronskian of (y_1, z_1) and (y_2, z_2) are same.